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The radial distribution of the end-to-end displacement of linear stiff chains embedded on a discrete lattice
shows a peculiar character that some peaks appear at different places in a certain limit. This limit imposes both
the stiffness and length of the chain to be infinite while their product, as duely defined, is being constant. We
model the chain as the persistent random walk~PRW! and obtain the distribution functions by Monte Carlo
simulations on square, cubic, and diamond lattices. Explanations on why the peaks occur at particular places
depending on the type of lattice are given with detailed calculations for the height of peaks in the case of the
square and simple cubic lattices. For the completeness we present the results for two types of the randomly
broken chain models~RBC-I and -II!, i.e., off-lattice versions for the stiff chain, obtained from much more
extensive simulations than those previously reported.@S1063-651X~96!01408-0#

PACS number~s!: 05.40.1j, 05.50.1q, 64.60.Fr

I. INTRODUCTION

The stiffness of a linear polymer in equilibrium is usually
determined by the competing effect of the energetics be-
tween isomeric states and the thermal energy@1–3#. If an
isomeric state is such that the chemical bond of an added
monomer favors a particular local orientation more than oth-
ers, the chain tends to grow ‘‘straight.’’@For real polymers
like polyethylene having a zigzag structure of spinal carbon
atoms or like polyisocyanates@4,5# and DNA’s having the
helicity, the straightness should be viewed in a scale larger
than individual monomers.# The straight part of the chain is
termed a segment and the mean length of the segment the
persistence length. Hence the stiffer the chain, the longer its
persistence length and it becomes rodlike if the degree of
polymerization is low enough. For theoretical treatment and
computer simulation of stiff linear chains embedded on dis-
crete lattices, one can adopt the persistent random walk
~PRW! model @6,7#: the first step starting at the origin is
made to any of the nearest neighbor sites with an equal prob-
ability but all the subsequent steps are made either in the
same direction as the preceding one with probability 12p
~transsteps! or in one of the other directions with probability
p divided by the number of such directions~gauchesteps!,
with the backtracking being always precluded.@The step
size, i.e., the lattice constant is set to be 1.#

Thus, in the framework of the PRW model, the gauche
probabilityp is the only parameter that controls the stiffness
represented by, e.g., the persistence lengthl p5p21 or the
mean number of segmentsNp11 in N-step walks. An ana-
lytic expression of the mean squared end-to-end distance of
the PRW is known, which reduces to
^R2&52(e2Np1Np21)/p2 in the so-called stiff limit@7–9#

p→0, N→`, Np5 const. ~1!

Two kinds of limiting behaviors can easily be picked up, that
is, the rodlike regime corresponding toNp!1 where the

radial distribution approaches to ad function peaked at
R5N, and the Gaussian regime corresponding toNp@1
with a Gaussian radial distribution. These behaviors are
qualitatively unchanged in three or higher dimensions even
in the presence of the excluded-volume effect@7,9–11#.

It has been found that, in the crossover regime where
Np is of the order of unity, the distribution function has
peculiar jumps and peaks@12,13,11#. We note that such
jumps and peaks appear on different places depending on the
types of lattices on which the model is embedded. Unfortu-
nately, the full knowledge of the cause of such jumps and
peaks has not been revealed up to date, as far as we know.

In this paper, we present the full explanations of why such
peaks occur at particular places. We present the detailed cal-
culations for the height of peaks in the case of square~sq!
and simple cubic~sc! lattices and for the exact positions of
such peaks for body-centered cubic~bcc!, face-centered cu-
bic ~fcc!, and diamond lattices. We also present the results
for two types of off-lattice versions of stiff chain, termed the
randomly broken chain model~RBC-I and II!, obtained from
extensive Monte Carlo calculations. It should, however, be
noticed that although we limit our work only on the positions
and the heights of the peaks, a qualitative investigation of the
widths of such peaks and heights is also a necessary part of
the work for the full knowledge of the peaks.

The probability density distribution of end-to-end dis-
placement of theN-step PRW can be expressed as

WN~r !5
1

z (
t50

N21

gN~ t,r !S p

z22D
t

~12p!N212t, ~2!

where z is the coordination number of the lattice and
gN(t,r ) is the number ofN-step walks witht gauche steps
whose end-to-end displacement isr . We define the radial
distribution or the probability density function as a continu-
ous histogram of widthDR[ N/A , A being an integer, cen-
tered atr5R5nDR (n50,1,2, . . . ,A)
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PN~R!5
1

DR (
R2

DR
2 <r,R1

DR
2

WN~r !. ~3!

We choosep50.01 andN5A5500 (DR51) in the follow-
ing discussions since these parameters well meet both con-
ditions for the crossover regime and the stiff limit~1! on the
computational efficiency.

In Sec. II, the structures ofPN(R) for sc and sq lattices
are analyzed, focusing on the positions of the peaks and
jumps, and a detailed calculation is performed for the height
of the peaks. In Sec. III, we present the results for the bcc,
fcc, and diamond lattices in a similar vein. Section IV con-
tains the results for two off-lattice versions of stiff chains
obtained from much more extensive simulations than those
previously reported. Section V is devoted to the summary
and concluding remarks.

II. RESULTS FOR SIMPLE CUBIC
AND SQUARE LATTICES

In Fig. 1~a!, we present the radial distributions of the
PRW’s on sc~solid line! and sq lattices~dotted line! ob-
tained from 103106 walks generated for each lattice by
Monte Carlo simulations. The ordinateR is scaled byN, i.e.,
by the fully stretched length, to indicate that the shape of the
curve is identical for the sameNp in the stiff limit ~1!. We
note that there are two peaks atR5N andN/A2 for both
lattices and a jump atR5N/A3 for the sc lattice only. This
feature remains unchanged if the value ofNp varies within
the same order of magnitude, i.e., in the crossover regime.

The peak atR5N can easily be understood@12,13,11#
considering that the probability for the walks of all trans
steps is finite by Eq. ~2! in limit ~1!, which is
e2Np'0.0067 forp50.01 andN5500.

The peak atR5R05N/A2, on the other hand, turns out
to be due to a group of walks whose steps are made in either
of two mutually perpendicular directions@e.g.,1x and1y
directions in Fig. 1~b!#. Theseplanar walks end up at a
boundary edge of the set of lattice points that anN-step PRW
can reach with a nonzero probability andR0 is the shortest
distance from the origin to the edge@see Fig. 1~b!#. Figure
2~a! shows the edge and some walks whose steps are made
either in1x or1y direction. As the radius increases passing
R0 , these walks start to contribute to the distribution func-
tion: the first contribution comes from the walks that end at
the points in ‘‘shell 1,’’ second from those in ‘‘shell 2,’’ and
so on. Although the number of points to be reached with a
nonzero probability in ‘‘shell 1’’ is smaller than those in
‘‘shell 0’’ ~the inner shell of shell 1!, the new contribution of
these edge points is large enough to result in a sudden in-
crease in the distribution function thereat because the edge
points are reached with smaller number of turns, hence, with
higher probabilities.

The main reason why the peak is so sharp is that the
length of the edge that subsequent shells contain rapidly de-
creases as their radius increases. For example, one can check
that the portion of the edge in ‘‘shell 2’’ (P1P2) is only
about 40% of that in ‘‘shell 1’’ (P0P1) for largeA. More-
over the number of ways to reach an edge point decreases as

its distance increases, which must cooperate for the sharp-
ness of the peak.

One can estimate the height of the peak assuming that it is
determined by the contribution of edge points in ‘‘shell 1.’’
The height of the peakHP can be formally written as

HP5
z~z22!

2 (
rPP1P18

(
t51

N21

Pt~r !, ~4!

wherePt(r ) is the probability for anN-step PRW to reach
r by makingt turns ~gauche steps!, and the first summation
is over all edge points in ‘‘shell 1.’’ The factorz(z22)/2
comes from that there are that number of equivalent bound-
ary edges~‘‘equivalent’’ in the sense of symmetry!. If we
approximatePt(r ) by Pt(P0) substitutingr with a represen-
tative pointP0 , then the first summation in Eq.~4! reduces
to mntWt , wherem5(2A2/A)1/2N is the number of points
in the edgeP1P18 , nt the number of ways to reach the point

FIG. 1. ~a! Radial distributions of theN-step persistent random
walks ~PRW’s! on square~dotted line! and simple cubic~solid line!
lattices. 103106 samples were generated by Monte Carlo simula-
tion for each lattice and the histograms of intervalDR51 were
obtained with statistical fluctuations less than or comparable to the
local jagged structure of each curve. The cross (3) indicates the
boundary edge contribution and the circle (s) the boundary plane
contribution.~b! The boundary square on a square lattice beyond
which anN-step walk cannot reach.R0 is the ~shortest! distance
from the origin to a side.~c! The octahedron on a simple cubic
lattice beyond which anN-step walk cannot reach.R1 ~not shown!
is the distance from the origin to a face. Note thatR05N/A2 and
R15N/A3.
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P0 , andWt5z21@p/(z22)# t(12p)N212t the weighting for
any path toP0 with t gauche steps. Moreover because of the
symmetrynt can be written as 2nt8 , nt8 being such that the
first step is predetermined along, e.g.,1x direction as in Fig.
2~a!. Thus Eq.~4! can be recast as

HP'S 2A2A D 1/2Np(
t51

N21

nt8S p

z22D
t21

~12p!N212t. ~5!

Here nt8 is equal to the number of ways to chooset21
turning points, e.g., the pointsB andC in Fig. 2~a! for the
path OBCDP0 for t53 ~note that the last pointD is
uniquely determined by the preceding two points!. We obtain
up to t55

n1851,

n285
N

2
21'

N

2
,

n385SN2 21D 2' N2

4
,

n485 (
x51

N
2 22 SN2 212xD SN2 21D'

N3

16
,

n585F (
x51

N
2 22 S N

2
212xD G 2' N4

64
,

which, when substituted in Eq.~5!, give in limit ~1!

HP'S 2A2A D 1/2Npe2NpF11
Np

2~z22!
1

~Np!2

4~z22!2

1
~Np!3

16~z22!3
1

~Np!4

64~z22!4
G . ~6!

Having higher order terms, one may find thatHP is written
as a power series ofx[Np/(z22) and x.1 from our
choice ofNp55 which makes the power series appear ill
defined. However, we believe that the series does converge
due to the numerical factor in the denominator in each term.
Estimated from Eq.~6! are 0.5531022 for the sc lattice and
1.3731022 for the sq lattice and we see that these values
agree reasonably well with the Monte Carlo data in Fig. 1~a!.

We note another interesting feature of the radial distribu-
tion, a jump occurring atR15N/A3 for the sc lattice which
is absent for the sq lattice. We identifyR1 as the distance
from the origin to the octahedral planes forming the bound-
ary beyond which theN-step PRW cannot reach@see Fig.
1~c!#. If a walk consists of steps made in either of the three
mutually perpendicular directions, it will end up at a point on
a boundary octahedral plane. Figure 2~b! shows the plane
cutting through1x, 1y, and1z axes each atN, two con-
secutive shells of thicknessDR, and the intersections be-
tween the plane and shells, i.e., the contact pointQ between
the plane and the inner surface of shell 1, and the intersection
circlesC1 andC2 between the plane and the outer surfaces
of shells 1 and 2, respectively. Thus, as the end-to-end dis-
tance increases passingR5R1 , walks terminating at the
boundary planes start to contribute to the distribution func-
tion, producing a sudden jump thereat.

For the same reason as discussed for the peak atR5R0 ,
the height of the jump can be considered coming dominantly
from the probability of the walk to reach the points inside the
circle C1 . We note that the peak introduced by this jump is
not so sharp as the one atR5R0 . This is because the number
of points of boundary plane contained in the subsequent
shells varies little~in fact, it increases very slowly! as the
radius of the shell increases and distant points are only en-
tropically less favorable. In a manner similar to Eq.~4!, we
write the height of the jumpHJ as

HJ5
z~z22!~z24!

3! (
r in C1

(
t51

N21

Pt~r !, ~7!

FIG. 2. ~a! A diagram for explaining the boundary edge contri-
bution. The probability for anN-step PRW to reach lattice points on
P1P18 falling in ‘‘shell 1’’ is responsible for the peak (3) in Fig.
1~a!. PathOBCDP0 is an example of a three-turn PRW to reach
the representative pointP0 . ~b! A diagram for explaining the
boundary plane contribution. The probability for anN-step PRW
ending on each lattice point inside the ‘‘shell 1’’ is responsible for
the jump (s) in Fig. 1~a!. The representative pointQ is the contact
point between the inner surface of shell 1 and the octahedral face.
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where the factor before the summations is the number of
equivalent polyhedral planes for general hypercubic lattices
and the first sum runs over all end points inside the circle
C1 . We approximate this equation by replacingr by a rep-
resentative pointQ, reducing the first summation tomntWt
as for the peak atR0 , where in this casem52pN2/3A.
Again by symmetry,nt can be written as 6nt8 , nt8 being the
number of ways to reach the pointQ by makingt turns with
directions of the first step and first turn predetermined along
1x and1y, respectively. Thus Eq.~7! can be recast as

HJ'S z24

z22D 2p

3A
~Np!2(

t52

N21

nt8S p

z22D
t22

~12p!N212t.

~8!

We obtain, up tot55,

n2851,

n385SN3 21D32'
2N

3
,

n485SN3 21D 234'
4N2

9
,

n5855SN3 21D 313 (
x51

N/322 SN3 212xD SN3 21D'
13N3

54
,

which, when substituted in Eq.~8!, give in the stiff limit ~1!

HJ'S z24

z22D 2p

3A
~Np!2e2Np

3F11
2Np

3~z22!
1

4~Np!2

9~z22!2
1

13~Np!3

54~z22!3G . ~9!

We found that the estimate for the sc lattice 1.0631023

amounts to about 70% of the Monte Carlo result in Fig. 1~a!
but approaches more than 90% for the four-dimensional hy-
percubic lattice~not shown!.

III. RESULTS FOR BCC, FCC, AND DIAMOND LATTICES

In this section we determine only the exact positions of
peaks and jumps appearing on the bcc, fcc, and diamond
lattices, employing essentially the same arguments as given
in the preceding section. We can, in principle, perform simi-
lar calculations to estimate the heights of those features if
necessary.

Figures 3, 4, and 5 show the Monte Carlo data of the
radial distributions for the bcc, fcc, and diamond lattices,
respectively, obtained from 103106 PRW’s for each case.
The peak atR5N is again due to the finite probability for
the walks of no gauche step, regardless of the lattice type. By
now, we know that the peaks and jumps at different positions
are due to contributions of the boundary edge and plane on
whichN-step walks end and that those edges and planes cut
at distanceN through a set of ‘‘coordinate axes,’’ chosen in
directions of corresponding coordination vectors. We will
identify such a set of ‘‘coordinate axes’’ forall peaks and

jumps and find distances from the origin to the correspond-
ing edges and planes.

In Fig. 3~a!, a unit cube of the bcc lattice is shown with
four coordination vectors, out of a total of eight, indicated by
bi . Since the lattice constant is chosen to be unity the length
of each edge is 2/A3. Each boundaryedgeis determined by
a pair of ‘‘coordinate axes’’ in directions of any two non-
colinear coordination vectors, i.e., there arez(z22)/2524
such pairs. If we take this cube for geometry of the scaled
(N-step! PRW by the stretched lengthN, these edges can be
identified as domain boundaries of walks and can be ob-
tained by connecting the pairs of vertex points of the cube.
For example, the edgeAB is determined by axes in direc-
tions of b1 andb2 andBD by b2 andb4 , and so on. These
edges are classified as the two distinct ones, each having 11
more equivalents, the distances of which are 1/A3 and
A2/3, respectively. Thus these contributions of two types of
boundary edges give rise to the peaks atR5N/A3 and
A2/3N in the original scale, as shown in Fig. 3~b!.

FIG. 3. ~a! A unit cube of the bcc lattice centered at the origin
with coordination vectorsbi . The end points ofN-step PRW’s on
the bcc lattice constitutes a cube of side (2/A3)N. ~b! As Fig. 1~a!
for the PRW on the bcc lattice.
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Similarly, the rescaled boundaryplanescan be obtained
by connecting triplets of vertices of the cube, e.g.,nABC
determined by axes in directions ofb1 , b2 , and b3 and
nABD by b1 , b2 , andb4 . There are two distinct planes out
of z(z22)(z24)/6532, 8 of which are equivalent to
nABC and 24 tonABD whose distances are, respectively,
1
3 and 1/A3. Thus these two kinds of boundary plane contri-
butions produce jumps atR5N/3 andN/A3, as shown in
Fig. 3~b!.

We note that thetrue boundary for theN-step PRW on
the bcc lattice is the surface of a cube of side (2/A3)N in the
sense that the walk cannot reach beyond the boundary. But
we still called the internal planenABC ‘‘boundary’’ not
just for convenience but itis for a set of walks grown in
particularly chosen directions. The features for the bcc lattice
are less prominent compared to those of the sq and sc lat-
tices. This is mainly because the coordination number of the
bcc lattice is larger@see Eqs.~5! and~8!#. We also note that
the two kinds of contributions appear coincidentally at
R5N/A3 and that the jump atR5N/3 is so small as to be
barely noticeable. The reason for the latter is that the density

of the lattice point on that plane is small and, in addition, the
distance of the plane is too short to yield a large ‘‘circle
C1’’ @as in Fig. 2~b!#, let alone a largerz.

Figure 4~a! shows a pair of unit cubes of the fcc lattice,
with the coordination vectors indicated byci ’s. The length of
the edge of the cube isA2 and the 12 nearest-neighbor sites
of site O are labeled by letters ‘‘A’’ through ‘‘K’’ which
constitute the 14-faced polyhedron indicated by thick lines.
The sides and faces of this polyhedron, when blown up by a
factor ofN for N-step PRW, form the true boundaries con-
taining some ‘‘internal’’ ones as in the case of the bcc lattice.

Even though there are 60 pairs of coordinate axes gener-

FIG. 4. ~a! A pair of unit cubes of the fcc lattice centered at the
origin with coordination vectorsci . The 14-faced polyhedron indi-
cated by thick lines connecting the twelve sites nearest to the origin
forms the domain ofN-step PRW scaled byN. ~b! As Fig. 1~a! for
the PRW on the fcc lattice.

FIG. 5. ~a! A pair of unit cubes of diamond lattice. The two~fcc!
sublattice nature is indicated bya ~filled circle! andb ~open circle!
sites. A trans step is defined as such that it forms a plane with its
two immediately preceding steps.~b! As Fig. 1~a! for the PRW on
the diamond lattice.
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ating a boundary edge, only three are distinct: when rescaled
to the unit cube with the origin positioned atO, axesOG
andOA form an edgeGA, axesOG andOB an edgeGB,
and axesOG andOH an edgeGH, the distance of which
are, respectively,A3/2, 1/2, and 1/A2. Twenty-four out of
sixty boundary edges are equivalent to each of the first two
edges and the rest to the third one. The peaks due to these
contributions are shown in Fig. 4~b! at R5N/2, N/A2,
(A3/2)N. The reason why the height of the peak at
R5(A3/2)N is greatest is that, in addition to a relatively
large number of equivalent edges, the density of points on
the edge is largest and the part of the edge in ‘‘shell 1’’@as
P1P18 in Fig. 2~a!# is larger asR gets larger.

The boundary planes for the fcc lattice are generated by
160 triplets of noncolinear coordination vectors, 16 out of
which are coplanar, e.g., (c1 ,c3 ,c5) or (c1 ,c4 ,c6), whose
contributions to producing jumps in the distribution function
are negligible~with the weight proportional top). As far as
the distance of the boundary planes from the origin is con-
cerned, we find that there are only five distinct planes. These
can be identified in Fig. 4~a! as follows:nGHC at a dis-
tance 1/A2, nGHA at 1/2, nGHD at 1/A10, nGCA at
A2/3, andnGBD at A2/11. These contributions are indi-
cated in Fig. 4~b! but they are again so small as to be barely
noticeable, as for the bcc lattice for similar reasons.

For the diamond lattice, where the angle between adjacent
bonds is cos21(21

3)'109°, the definitions of the trans and
gauche steps should be slightly modified. A step is called
trans if it is coplanar with its two adjacent preceding steps
and gauche, otherwise. Because of the two~fcc! sublattice
nature of the diamond lattice, all the odd-numbered steps
occupy a site of one sublattice and all the even-numbered
steps a site of another sublattice. We call these two sublattice
sitesa and b, denoted by filled and open circles, respec-
tively. For the sake of convenience we takeN to be even and
the lattice constant to beA3/2, so that the ‘‘sublattice con-
stant’’ corresponding to two steps is 2, the side of the cubes
shown in Fig. 5~a! is 2A2, and the end-to-end distance of the
walks of all trans steps is justN.

It is somewhat tricky to find the relevant boundary edges
and planes for theN-step walks on a diamond lattice. Since
N is taken even, the end points must be in the same sublattice
as the starting point, forming the same solid figure as in the
case of the fcc lattice in Fig. 4~a!. However, not all the
boundary edges and planes thereof give rise to peaks or
jumps on the distribution function because, to do that, such
‘‘edges’’ must be able to be reached by walks of only one
gauche step and such ‘‘planes’’ by walks of only two gauche
steps. We find that the edges satisfying this condition are the
sides of the polyhedron in Fig. 4~a!, all of which are equi-
distant from the origin. As for the directions of individual
steps, reaching those boundary edges requires two things:
first, all steps on one sublattice must be trans and second, the
directions of steps on another sublattice must be either of
two predetermined ones with at least one gauche step. Figure
5~a! illustrates some walks ofN54 with one gauche step to
identify the boundary edges and their distances. Onlya sites
are labeled, and theb site between two adjacenta sites is
unique and is not labeled. Given that the first two steps are
made fromO to P, there are only four possible sites that a

walk can reach in the next two consecutive steps without
violating the requirements stated above, i.e., sitesA,B,F,
and G, reaching edgesQT, QR, QU, and QV, respec-
tively. Corresponding coordinate axes can be readily identi-
fied. The distances between the origin and these edge sites
are all equal toA12, and hence, forN-step walks, when
multiplied by a factor ofN/4, it becomes (A3/2)N, which is
responsible for the peak at that distance in Fig. 5~b!.

To identify boundary planes, we consider walks of
N56 with only two gauche steps which take three different
coordination directions defined by a sublattice, say,a sites in
Fig. 5~a!. There are only two nonequivalent paths meeting
this condition. Given that the first two steps are made from
R to C, these two kinds of paths may be represented by
RCPH andRCPF in directions of triplets of sublattice co-
ordinate axes$RO,RQ,RT% and $RO,RQ,RW%, respec-
tively. @PointW, not shown, is the mirror image of pointO
to the planenREQ.# In the first kind of path, gauche steps
occur only atb sites, whereas in the second, they occur at
botha andb sites. Thus, the corresponding boundary planes
are parallel tonOQT andnOQE, whose distances from
R are A2/3 and 2A2, respectively. For theN-step walks,
these distances become, when multiplied by a factor of
N/4, A2/3N, andN/A2 , where sudden jumps indicated by a
circle (s) occur in the distribution in Fig. 5~b!.

It is interesting that the boundary edges and planes for the
diamond lattice are the surface of the 14-faced polyhedron as
shown in Fig. 4~a!, namely, one type of equivalent edges and
two types of triangular and square faces. Moreover the small
z value makes the boundary contributions in the diamond
lattice more pronounced than in other types of lattices.
Schroll, Walker, and Thorpe@13# noticed the position of the
peak due to the boundary edge contribution by two different
approaches and, as results, they found that the distribution
function of one-gauche chains is nonzero only for
R>(A3/2)N ~with typographical errors therein corrected!
and decreases monotonically. Their Monte Carlo result of a
freely rotating chainwith an angle of 120° between two
adjacent straight segments yielded a single peak there. These
results may be readily understood through the geometrical
considerations taken up above.

IV. OFF-LATTICE MODELS

We have discussed so far the chains embedded on discrete
lattices. In this section, we deal with two off-lattice models
of stiff linear chains, termed type I and type II of theran-
domly broken chain~RBC-I and RBC-II!. RBC-I was origi-
nally suggested by Molina and de la Torre@12# as a semi-
flexible macromolecular model: Fig. 6 shows a configuration
of an RBC-I consisting of a few step vectors$bi%, whose
directions are either the same as their preceding step vector
with probability 12p or, otherwise, completely randomly
distributed over the whole solid angle.@p can still be con-
sidered as the gauche probability.# On the other hand, for the
RBC-II, the polar angle, denoted byu i in Fig. 6, is fixed and
thus the dihedral anglef i alone is random. One may view
the type I and II of RBC models as the ‘‘stiff’’ versions of
freely jointed chainsand freely rotating chains@2#, respec-
tively.
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Figure 7~a! shows the radial distributions of the end-to-
end distance of the RBC-I in two and three dimensions for
p50.01 andN5500. The frequency histograms are obtained
from 103106 chains with an interval ofDR51. No peak or
jump appears except forR5N. This strongly supports that
the local minima that Fig. 2 of Ref.@12# suggests are spuri-
ous except for the one nearr5L ~in our notation,R5N).
However, still the most important feature appears near
R5N, as can be seen in Fig. 7~a!. We note that the prob-
ability nearR5N is fairly large compared to the lattice re-
sults and even larger than the expected value
e2Np.0.0067. The latter, as it turns out, is because of the
contributions of the last interval@N2DR/2,N), upper bound
being excluded, to the histogram. Figure 7~b!, where a few
chains of a single break with their first step fixed in1x
directionOAH, OBG, etc., are shown together with the cir-
cular loci of their end points, explains qualitatively why this
contribution is large. The probability for any point on the
same circle is the same in the figure. We can see that the loci
are relatively concentrated near the ‘‘surface’’ of the walk
domain and this might have caused the excess values on the
peak atR5N.

For a more quantitative analysis of this feature, one may
write the probability for the outermost shell, apart from the
d functionlike probabilitye2Np at R5N, as

Prob~N2DL<R,N!5 (
t51

N21

PSt~DL !, ~10!

where PSt(DL) is the probability that an end point of an
RBC-I with t breaks lies in the outermost shell of thickness
DL, @N2DL,N). We then approximate the right-hand side
of the above equation to a single termPS1 (t51), which
should be reasonably good forDL!N in the limit ~1!. Figure
8 illustrates a chain of a single break at the end of thei th
bond, whose end point hits the inner boundary of the outer-
most shell in which any chain of a single break with a polar
angle less thanu i falls. To the first order inDL,

cosu i512
N

i ~N2 i !
DL, ~11!

which enables us to obtain expressions forPS1(DL) in two
and three dimensions

PS15 (
i51

N21
u i
p
p~12p!N22

'
pe2Np

p (
i51

N21

cos21F12
N

i ~N2 i !
DLG , d52;

~12!

FIG. 6. A schematic configuration of the randomly broken chain
~RBC! consisting of a few step vectors$bi%. The polar angle of
i th stepu i is defined as the angle betweenbi21 andbi , while the
dihedral anglef i is usually defined as the angle of rotation from a
plane formed by two preceding straight segments. Trans and gauche
steps defined for this case are discussed in the text.

FIG. 7. ~a! Monte Carlo data of the radial distribution of
N-step RBC-I in two~dotted line! and three~solid line! dimensions,
obtained using the parametersN, p, andDR the same as for Fig.
1~a!. A special feature is that the probability nearR5N is fairly
large as indicated byPS1 . ~b! A schematic diagram for a few
single-break RBC-I’s with the first stepb1 fixed in 1x direction,
OAH,OBG, etc., and the loci of their evenly distributed end points.
Each circle~or sphere in three dimensions! has the same weight
p(12p)N22.

1636 54JANGNYEOL MOON AND SANG BUB LEE



PS15 (
i51

N21
12cosu i

2
p~12p!N22'pe2Np~ lnN!DL, d53.

~13!

It should be noted that the right-hand side of Eq.~11! may be
less than21 for somei ’s if DL is of an order of unity or
larger, in which case cosui should be taken as21 for those
i ’s and Eqs.~12! and ~13! should be changed accordingly.
We found that the values obtained from Eqs.~12! and ~13!
are, respectively, 1.4431023 and 2.2831024 for
DL5DR/250.5 @i.e., for the interval@N2DR/2,N)] and
that they agree with the excess values of our simulation re-
sults ~at R5N) over the contributions of fully stretched
chains, up to 90% ford52 and 99% ford53. @Note that
simulation results are 1.6131023 and 2.3131024 for d52
andd53, respectively.# We performed similar comparisons
for inner shells near the ‘‘surface’’ using Eqs.~12! and ~13!
and estimated Prob(N21.5DR<R,N20.5DR)
5PS1(1.5DR)2PS1(0.5DR)'1.0831023 for d52 and
4.5431024 for d53, which are about 75% and 95% of the
corresponding simulation values. Therefore it seems to us
that Eq.~12! is a good approximation of Eq.~10! only for
DL!1, while Eq. ~13! is good forDL up to an order of
unity.

We finally turn to the type II of the RBC. We note that if
the gauche probabilityp51, the RBC-II becomes a tradi-
tional freely rotating chainfor which the second and fourth
moments of the end-to-end distance are known in closed
forms @2,14,15#. It can be shown that both the mean square
end-to-end distancêRN

2 & and the mean square radius of gy-
ration ^SN

2 & of RBC-II have essentially the same forms as
those of freely rotating chains and RBC-I. Since
RN[( i51

N bi , bi being thei th step vector, one can write

^RN
2 &5(

i51

N

(
j51

N

^bi•bj& ~14!

^SN
2 &5

1

~N11!2 (
0< i, j<N

^~Ri2Rj !
2&, ~15!

whereR050. Since we have for the RBC-II with polar angle
u

^bi•bj&5 (
k50

u j2 i u S u j2 i u

k D ~cosu!kpk~12p! u j2 i u2k

5@12p~12cosu!# u j2 i u, ~16!

following the well-known expressions@2# can be used to get

^RN
2 &5

11a

12a
N2

2a~12aN!

~12a!2
, ~17!

^SN
2 &5

N~N12!~11a!

6~N11!~12a!
2

Na

~N11!~12a!2

1
2Na2

~N11!2~12a!3
2

2a3~12aN!

~N11!2~12a!4
, ~18!

with a512p(12cosu). One can easily verify that
a5cosu ~or p51) for freely rotating chainsanda512p
for RBC-I and PRW on any symmetric lattices.

To investigate the radial distribution of the end-to-end
displacement of the RBC-II, we generated 103106 chains
for each ofu560° and 90°, withN5500 andp50.01 for
both cases. The frequency histograms are plotted in Fig. 9.
The arrows denoted are the root-mean-square of the end-to-
end distance calculated from Eq.~17!, and we found that
they agree well with our simulation results over three or
more significant digits. We also found that a peak other than
the one atR5N appears atR05Ncos(u/2), unique for a
given polar angleu, at which chains with a single break just
start to contribute to the distribution function. To elucidate
this feature, we examine the geometry of single-break RBC-
II’s of length N shown in Fig. 10 in a similar way in some
respects to Fig. 2~a!. Given the first step fixed along1x
direction, the end points of chains lying in the first quadrant
of the xy plane fall on the line QN @e.g., O1Q,
O(N/2)P0 , OiP] but by the freely rotating nature of the
chain they are in fact evenly distributed over separate circles
on the cone as shown in the figure. A straightforward way of
estimating the height of the peak is to count the number of
these circles contained in the ‘‘shell’’ of thicknessDR posi-
tioned atR05OP0 , each contributing by the same weight.
This number, say,m, is clearly the same as that of the end
points on the lineP1P18 in Fig. 10, for which we have, up to
first order in DR, m5A2Ncos(u/2)DR/sin(u/2). Conse-
quently, with the single break probabilityp(12p)N22 and
DR5N/A, the heightHP in limit ~1! can be expressed as

HP'
Npe2Np

sin~u/2! S 2cos~u/2!

A D 1/2, ~19!

which yields an agreement with the simulation data just as
well as Eq.~5! does with the simulation data for the sc lat-
tice. To make more legitimate comparison of the estimation
of Eq. ~19! with a frequency histogram result, one should
take into account the difference in positions of ‘‘shells’’ for

FIG. 8. An illustration of an RBC-I with a single break at
R5 i and polar angleu i . End points of any chain with a polar angle
less thanu i falls in the outermost shell of thicknessDL ~indicated
by a thick arc!.
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the two cases: Eq.~19! is for R0<R,R01DR, whereas the
histogram interval in question is taken@(n2 1

2)DR,(n
1 1

2)DR] containingR5R0 for some integern. For example,
for u560°, R05(A3/2)N'433.01 and the corresponding
histogram interval is @432.5,433.5), so we take
DR5433.52433.0150.49 for Eq.~19! and, after consider-
ing this, we found that the results agree within an error of
only a few percent.

An alternative way to derive Eq.~19! is to use an expres-
sionP1(R) presented in Ref.@13# for the probability density
function of the single-break RBC-II, where our RBC-II is
referred to as thefreely rotating chainand ouru denoted by
180°2u8. From chain OiP in Fig. 10, we have
R25(N2 i )21 i 212i (N2 i )cosu and, from P1(R)dR
5di/N and takingi as a continuous variable, we get

P1~R!

5H 1

Nsin~u/2!

1

A12~R0/R!2
, if R>R0[Ncos~u/2!

0, otherwise.

This P1(R) is in fact the conditional probability for the
single-breakchain and one needs to multiply the weight for
that condition, i.e.,p(12p)N22 to get the right contribution
to the total distributionP(R). Then the height of the peak
HP due toP1 can be estimated by an integration

HP5p~12p!N22E
R0

R01DR

P1~R!dR, ~21!

which reduces to Eq.~19! in the first order ofDR5N/A.

V. SUMMARY AND CONCLUDING REMARKS

We have shown that the peaks and jumps appearing in the
distribution functions of the end-to-end distance of stiff
chains are due to the contributions from the boundaries be-
yond which the walk of a fixed number of steps cannot
reach. This walk domain forms a polyhedron determined by
the type of lattice in which the chain is embedded. We found
out all the exact positions of the peaks and jumps for various
types of lattices, which can essentially be identified as the
distances from the center of the polyhedron to the boundary
edges and planes. The boundary edge contribution produces
a sharp peak whereas the boundary plane yields a sudden
jump. In particular, for the sq and the sc lattices, we obtained
approximate analytic expressions for the heights of peaks
and jumps as a function of the average number of gauche
stepsNp in the ‘‘stiff’’ limit ~1! and found that the results
agree reasonably well with our Monte Carlo data.

We have also presented detailed structure of the distribu-
tion functions by Monte Carlo simulations for two off-lattice
models of stiff chains, i.e., two types of the randomly broken
chain ~RBC-I and RBC-II!, which can be viewed as the
‘‘stiff’’ versions of the randomly jointed chains and freely
rotating chains, respectively. The distribution of the end-to-
end distance of the RBC-I does not have any peak except at
R5N, but the probability thereabout is considerably higher,
the limiting value of which is calculated for both two and
three dimensions. On the other hand, the distribution for the
RBC-II shows a peak at a point other thanR5N, which can
be exactly located depending on the polar angle chosen.

We believe that our results should be directly applicable
to the distribution of the mean end-to-end distances of
‘‘real’’ linear polymer chains in the stiff limit. Unfortunately
up to date, however, we have not been able to find any ex-
perimental work in the literature which deals with a similar
feature, except some measurements of average sizes of very

FIG. 9. The radial distributions ofN-step RBC-II for polar
anglesu560° ~dotted line! andu590° ~solid line!. The parameters
N, p, andDR are the same as for Fig. 1~a!. The arrows indicate the
^R2& obtained in a closed form@Eq. ~17!# for each givenu.

FIG. 10. A schematic diagram for three single-break RBC-II’s
with a polar angleu and the first stepb1 fixed in 1x direction,
O1Q, O(N/2) P0 , andOiP, and corresponding circular loci of
their end points on the boundary cone. A shell of thicknessDR
located at the shortest distanceR05OP0 contains so many circles
intersecting lineP1P18 as to be responsible for the peak in Fig. 9.
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stiff polymers@5#, having direct relevance to these features
of the stiff chains discussed in this paper.

Besides in the experimental aspect, our results can also be
considered as details of random walks with certain preferred
probability distributions, i.e., the lattice random walks which
tend to take a step along the same direction as that of the
previous step. Since these features concern the end-to-end
distance, a special type of diffusion problem or certain inter-
action between two functional groups attached to both end
points of random walks, where the most probable, rather than
the average, values of relevant variable play an important

role, may find an application, a further elaboration of which
is deferred to a future study.
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